PhD Course
March 2025

‘ ‘

g
B
B
B
(—

Roberto Bruni, Roberta Gori
(UniversitysofiPisa
- Lecture #01 I

[source]

https://www.acunetix.com/blog/web-security-zone/dynamic-static-code-analysis-web-security/

Lectures plan

Wednesday, March 12 11-13
Thursday, March 13 11-13

Wednesday, March 19 11-13
Thursday, March 20 11-13

Wednesday, March 26 11-13 & W)
ThllI’Sday, March 27 11-13 Azalea Raad Roberta Gori

Wednesday, April 2 11-13
Thursday, April 3 11-13

O Aan >w

<
-

)3 (032 MP ~mce

03y

Pro >
C-mc}

Bugs

1947

ditfial g e

R

2. lloyq0Yyis
2. /506767/3

7032 g3y 015

7037 S’Y&“?S’ Mc/i’

Y WIKIPEDIA

"«"f 1 The Free Encyclopedia

A software bug is an
error, flaw or fault in the
design, development, or
operation of computer
software that causes it
to produce an incorrect
or unexpected result

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_software

Software Verification

CO rreCt n eSS the aim is to prove the absence of bugs

o\’\\\

I n CO rreCt n eSS the aim is to prove the presence of bugs

The need for verification

Friday, 24th June [1949]
Checking a large routine by Dr A. Turing.

How can one check a routine 1n the sense of making sure that 1t 1s right?

Why do we need to verify our code?

The code that exploded Ariane 5 rocket!

Ariane 5 Rocket Explosion (1996)

Caused due to numeric overflow error

Attempt to fit 64-bit format data into 16-bit space
Cost: $100M for loss of mission

Multi-year set back to the Ariane program

Read more at:
https://www.bugsnag.com/blog/bug-day-ariane-5-disaster/

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster/

Unfortunately

It was one of the most serious but not the only one....

~~~~~

\\\ .
~\>\\

https://www.cs.tau.ac.il/~nachumd/horror.html

Boeing 747 Max Crashes

Toyota unintended acceleration 350 people died

4 people died


https://www.cs.tau.ac.il/~nachumd/horror.html

Costs of SW bugs

Knight Capital Trading Glitch (2012) Nissan Airbag Malfunction (2014)
$440 M 1 Million Vehicles Recalled

Software Fails Watch (Tricentis, 2017): SW bugs lead to $ 1.7 Trillion revenue lost.

CISION PR Newswire (2020): SW bugs cost $ 61 Billion loss in productivity annually.

https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/

https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html


https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/
https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html

Complexity of programs

Size of Linux Kernel Avg. Size of Android Apps

(MBs)

Avg APK Size

0.01 1.0.0 1.1.0 1.2.0 1.3.0 2.0.0 2.1.0 2.2.0 2.3.0 240 250 2.6.0 3.0 4.0 5.0 Jan, 2013 Jan, 2014 Jan, 2015 Jan, 2016 Jan, 2017/
Kernel Version

always increasing!



Success stories

A long time before success Other Famous Success Stories

» Flight control software of A380: Astree verifies absence of
run-time errors (2005, abstract interpretation)

Computer-assisted verification is an old idea
http://www.astree.ens.fr/

> Turing, 1948

> Floyd-Hoare logic, 1969 > Microsoft’s hypervisor: using Microsoft's VCC and the Z3
automated prover (2008, deductive verification)
http://research.microsoft.com/en-us/projects/vcc/

Success in practice: only from the mid-1990s More recently: verification of PikeOS

» Importance of the increase of performance of computers » Certifled C compiler, developed using the Coqg proof
assistant (2009, correct-by-construction code generated by
a proof assistant)
A first success story: http://compcert.inria.fr/

» Paris metro line 14, using Atelier B (1998, refinement >

L4.verified micro-kernel, using tools on top of Isabelle/HOL
approach)

proof assistant (2010, Haskell prototype, C code, proof
assistant)
http://www.ertos.nicta.com.au/research/14.verified/



The main question

Will our program behave as we intended?

We need to analyse all executions of the program
The semantics of a program is a description of its run-time behaviors

Checking if a software will run as intended is equivalent to
checking if the code satisfies a (semantic) property of interest



Forward semantics for deterministic programs

We start from input state o and we want to characterise the reachable output states

A program
Input store Output store

c r*-\,-f\,r*- ¢ o s [cllo

o ""\4@ lcllo =L Non terminating execution

Denotational semantics fc]l: 2 — 2



Example

A

C =

while (n>1) { Icllln— 1l]l=[nrH 1,x+— 0]
n := n+l;
X 1= 0; [cflln— 2] =1

}

X ¢= n-1:



Collecting semantics for deterministic programs

Input stores A program
r C Output store
¢ Am [[C]]g
(*.\"(*.\4‘3
U W g W N [c]P = U iclo
(*\Jf\\;ﬁv.ﬂm Y

0(\,@ [cllo = L

Denotational semantics [ICll © 2 — 2

Collecting semantics Icll : (X)) — ¢(X)



Example

A

svhzile (n>1) { [cln>1)= 0
n := n+l; [c]ln>0)= {[n— 1,x+ 0]}
X = 0;

) [cln>0)= {[n— 1,x- 0],

X := n-1; n—0,x+— —1]}



ldeal exact analysis

[c]l : (%) = g(X)

semantic property of a program: a property about | c]||

& c [c]P

P(c) =VP . Vo € [[c]]P.o(x) #0



Undecidability in the way

non trivial property:
- there exists a program ¢ such that Z°(c) holds true
- and there exists also some program ¢ such that Z°(¢) is false

Rice theorem.
Let SP(c) be a non trivial semantic property of programs c.

There exists no algorithm such that, for every program c,
it returns true if and only if &(c) holds true

no analysis method that is automatic, universal, exact !

algorithmic for any program no false positive/negative




For some program...

Pc)=VP#@.do € [[c]|]P.o(x) #0

A

" @
x = 1;



and for some other program...

Pc)=VP#@.do € [[c]|]P.o(x) #0




o) WxrepiA - Gollatz's conjecture

- P
p_—

1 ifn <1
fn) =< f(n/2)  ifn#£0An%2=0 —
f(3n+1) otherwise Vn’f(n) o 1

f(12) = £(6) = £(3) = f(10) = f(5) = F(16) = f(8) = f(4) = f(2) = f(1) =1

The Collatz conjecture!?! is one of the most famous unsolved problems in mathematics. The

conjecture asks whether repeating two simple arithmetic operations will eventually transform every U

positive integer into 1. It concerns sequences of integers in which each term is obtained from the e For even numbers, divide by 2;
previous term as follows: if a term is even, the next term is one half of it. If a term is odd, the next term e For odd numbers, multiply by 3
Is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter ? and add 1.

which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all With enough repetition, do all

positive integers up to 2.95 x 1020, but no general proof has been found. positive integers converge to 17

It is named after the mathematician Lothar Collatz, who introduced the idea in 1937, two years after (more unsolved problems in mathematics)

receiving his doctorate.!*! The sequence of numbers involved is sometimes referred to as the hailstone

sequence, hailstone numbers or hailstone numerals (because the values are usually subject to multiple descents and ascents
like hailstones in a cloud),'®! or as wondrous numbers.!°!



but for Collatz’s conjecture?

Pc)=VP#@.do € [[c]|]P.o(x) #0
c =
while (x>1) {
1f (even(x))
else



Limitations of the analysis

no analysis method that is automatic, universal, exact !
We need to give something up:
automation: machine-assisted techniques

the universality “for all programs™:
targeting only a restricted class of programs

claim to find exact answers: introduce approximations



money (mmm| money (mm| money 1| money -
energy 1| energy 1| energymmm | enerqy




Over approximations

Good for proving correctness

true negative

Bad for bug-findings !

true positive false positive



Example
[c]n>0)= {[n~ 1,x- 0],

c = B
while (n>1) { mpeam 27 0x L
ooz AT [c]”(m>0)= {n€{01},x<0}
'
X = n-1;
% & [c]”>20) = & & llcll(n 2 0)
v 1= 1/(x-2); We can prove correctness!!

Undefined behaviour for

X= 2




Example
[c]n>0)= {[n~ 1,x- 0],

¢ A 0
while (n>1) { a2 0xm U
. 0s [c]”(>0)= {n € {0.1}.x <0
)
X ¢= n-1:; "
¥ glcn=z0) False Positive
y = 1/(x+2); & €c]”(@ > 0)

Undefined behaviour for

X=-2




Under approximations

Good for bug-findings !

true positive

Bad for proving correctness

false negative

cllP/ & <— true negative



Example
[cln>0)= {[n— 1,x+— 0],

c = B
while (n>1) { mpeam 27 0x L
oy [c]"(a>0)= {[n+ 1,x~ 0])
}
X 3= ol % lc]”>0) = # e [cl@>0)
We can prove there is an error !!
y = 1/(x);

Undefined behaviour for

x=0




Example
[cln>0)= {[n— 1,x+— 0],

c = )
while (n>1) { a2 0xm U
DT [c]™@>0)= {[n+ L x 0]
}
~otT I'l—]_; o un
¥ glcdin=z0) False Negative
y := 1/(x+1); & € lclin>0)

Undefined behaviour for

xX=-1




Proving Correctness: forward

v,
A program [cllP C O
C
(‘.\’(ﬂ‘\"ﬁ\"ﬂm either does not terminate
P &%:2% 0’\ g Q VoeP. [[C]]G or terminates in Q
o o e _ o e o

P Y
BM



Proving Correctr;ess: backward

A program P C wip(c, Q)
¢ [clPC O
LN R N B A
P .r‘k:::;'r:.:j?-\. 4\ g O Dijkstra’s weakest liberal precondition
Wmm wip(c,Q) = {o | [lcllio} € O}

¢ s, s




Nondeterministic programs

Some programs may exhibit nondeterministic behaviour
(lack of information, approximation, programming constructs ¢; + ¢,)

A program C

O \;C:/‘r? [c] : 2 — ¢(X)
cf\{g & o~

[cIPC O
P C wip(c, Q)

all the outputs starting from ¢ € P either do non terminate or terminate in Q



Example

A
C =

Divisor of (x)

{

[cll[x = 35] = {x=35,5s € {5,7})

s := nondet[2..X/2];
1f (x%s=0)

skip
else

while true do skip

}



An example: non-termination analysis

Given a program ¢ and an input store ¢ does [[c]lc = & ?

¢ O
S 0 )
O
Using over-approximation: we try to prove [[c]|”"c C & termination

Using under-approximation: we try to prove [[c]|'o 2 Q for some QO # &




What we will see

Forward Backward  Over-approximation  Under-approximation

Hoare Logic (HL) X X
Necessary Condition (NC) X X
Separation Logic (SL) X X

Incorrectness Logic (IL) X X

Incorrectness SL X X

UNTer X X X

Sufficient Incorrectness Logic (SIL) X X

Separation SIL X X




Recap of fixpoint theory



A simple imperative language

integer
variable

Cc = X:=da a:=n|x|a +a]...
| S k| p arithmetic
expression
| 50
| if bthen ¢, else ¢,
| while bdoc b:=a < a,|byAby]|...

Boolean

expression



Concrete domain

set of
l a
oc.X >/
set of
set of all integers

states

Y2 {o: X > Z)

concrete
domain

g(X) = {P|PCX)

state
property



Arithmetic expressions
[ -] : Aexp > 2 > Z

lallo

evaluates the arithmetic expression a in the current state o

[nllc £ n
[x]l6 £ 6(x)

[ayopallo = [apllo op llayllo



Boolean expressions

[ -] :Bexp — g(2) — go(2)
[L]|P (intuitively b A P)

is the set of all and only states in P that satisfy the condition b
[truel]P £ P

[false][P £ O

[aycmpaIP 2 {6 € P | [layllo cmp [allo )
[, bop b, 1IP £ [bylIP bop [b,11P

[not b]|P = P\([[P]P)



Commands

[-]:Com — (X)) — go(2)
[skip]]P £ P

[x:=a]]lP = {o[n/x] | 6 € Pandn = [[a]lo }

[co; ¢, 1P £ [, TI([[c 1P

[if bthen cyelse c;I1P = ([, [I([611P) U [[c,lI([not b]|P)
[while bdo c]]P £ [[not b]|P U [[while bdo c]|([[c[([LTIP))

how do we know one solution exists? how do we know it is unique?



Fixpoint problem



The general problem

f:D—D

a fixed point of f is d € D such that d = f(d)

et Fr ={deD|d=f(d)}CD

three questions:
e under which hypotheses F'; # &7
o if 'y # &, can we select a preferred element fix(f) € F7?

e and can we compute fix(f)?

44



f(n) = n?®—5n+8

f(n) £ n%5

{0,1,2,3,4}

45



f(S) = Sn{1} 19,11} } %
f(S) =N\ S %
f(S) = Su{1} {T'|1eT} {1}

F(SY={n|3ImeS,n<m} {0,k|keNU{g, N} o

46



Ingredients

a partial order (to compare elements)
order preserving functions

iterative approximations

a base case

a limit solution

47



Complete partial orders

48



Partially ordered set
. (Poset or just PO)

\ /7 >— a binary relation

(P, C) — —LCCPxP

reflexive Vp € P. pLp

antisymmetric Vp,q € P. pLqg N qEp = p=q

transitive Vp,gqre P. pCg N gCr = pCr

pC g means that p and g are comparable
and that p is less than (or equal to) g

49



Least element

(P,E) PO QCP [Le@
¢ isaleastelementof Qif Vge Q. (L q

TH. (unigueness of least element)
(P,E)PO Q C P (1,03 least elements of ) implies {1 = {2

/1 least elementof Q@ = {1 C /s l
J — 81 — 82

> least elementof @ = /{(; C /4
by antisymmetry

50



Bottom

(P,C) PO the least element of P
(if it exists) is called bottom and denoted L

sometimes written Lp

Examples
PO bottom?
(NU {oo}, <) 0
(9(5), €) %

(Z, <)
(Z U {—o00,00}, <) o0

51



Upper bound

(P,E) PO QCP wueP

v is an upper boundof @ if Vge Q. gL u

(all the elements of ) are smaller than u)

() may have many upper bounds

not necessarily
U inside O

52



Least upper bound

(P,C) PO QCP peP
p is the least upper bound (lub) of @ if

1. itis an upper bound of () Vge (). qgCp
2. It i1s smaller than any other upper bound of ()

Vue P. (VgeQ.qCu)=pCu

we write p = lub Q)

intuitively, it is the least element
that represents all of @)

P not necessarily an element of Q

53



Example

Upper bounds of {a,b} ? {f,h,i, T}

/\ lub? f
/\ /\
><><

N /



Example

Upper bounds of {b,c} ? {h,i, T}

/ \ uo? o lub
-/ \ / \
>< ><

S /



Example

(9(5), Q) QC p(S) Ilub? wb Q=) T
Te
{a,b,c}
( b}/{I}\{b |
+ 4 ¢ € lub {{a},1b}} = {a, b}
| > ]

14} 10} ¢}

S



Chain

(P,C) PO {di}ien isachainif Vi e N. d; C diy1

do;dl;d2:°'-;dn:---

any chain is an infinite list

finite chain: there are only finitely many distinct elements

or equivalently
dk € N. Vi > k. d; = di

57



Limit of a chain

(P,£) PO {d;}ien a chain

we denote by |_| d; the lub of {d;};en if it exists

1N

and call it the limit of the chain

58



Limit illustrated




Complete partial order

(P,C) PO P is complete if each chain has a limit (lub)




Continuous functions

61



Monotone function

(D,Ep) PO (E,CEr) PO f:D— FE

f is monotone if Vdi,ds € D.dy Ep do = f(d1) Cg f(d2)

Monotone = Order preserving

= {f(d;)}ien achainin E

{d;}ien achainin D ]
f monotone J

When D =FE wesay f: D — D is afunction on D

62



Monotonicity illustrated

df ...................... - f(d2)
a chain T I a chain
. = f(di) (by monotonicity)

- m o=
--______ - - oo
- -y
- -
- -
- -y
- bl
- -
- -
- -
" -
-
-
-~
“n
~






Example

(NU {00}, <) fin) =n/2 (NU {o0}, <)

- floc) = o -

Qo e 2
e |
e 1
T b
O e -0



Example

fn)=n % 2




Example

(N U {00}, <) f{g ~ - (N U

~
~
A
----------------------------------------------------------------------------------
______________________
----------
------- >
—4'
-
-
-”
- '
—"
L4
- .
-
- .
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--_-
----------
--------------
__________________
-
-----------------------------------
“
-
-
-
L 4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
------
________
------------
----------------------------

{00}, <)




Continuous function

(D,Cp) cPO (£,Eg) CPO f . D — E monotone

f is continuous if V{d;}ien. f <|_| df@) = | | f(ds)

chain ieN ;€N
Iimitin  limit In
D E

Continuous = limit preserving

68



Continuity |Ilusfr'cn“ed
lJub I—I i (I—I di) (by monotonicity)

df ......................... f(d2)
a chain T I a chain
1 = f(d1)  (by monotonicity)

--____--------------_-
- - o
- -
- -
- - -
- -
- -
- -
- ~
- ~
~ .
-~
~o
-



Continuity illustrated
lub Jdi (I_ld@)

- . 4eN iEN
I I follows from
------------------------------------------ . monotonicity
df / (fz) (and CPO)
achain | _eme—n
?1 """"" ‘ f(?l)
do"" T f(do)



Continuity illustrated
lub Jdi (I_ld@)

: I_If(di)?Ef(I_Id

- 1N €N
I I continuity
df ---------------------------------------------- f(?z)
a chain dy T . f(dl)
e |
do~" 7 f(do)

|






Example

(NU {00}, <) fin) =n/2 (NU {o0}, <)

- floc) = o -

Qo e 2
e |
e 1
T b
O e -0



---------
.....
-~
-
-~
~
~
~
-
~
~

---------
- -
.....
~
~
~
~
~
~
~
~
~
~
~

Example

monotone function, not continuous

0 ifzeN
. ﬂ@:{1 if 2 = oc

1eN

%’/ f(l_ldi>f<oo>1

iEN
fdi) =0

I_If(di)ZI_IOZO

<0 ieN iEN



Kleene’s fixpoint theorem

75



Repeated application

f:D—D




Towards Kleene's theo.

when (D,C) isa CPO, {f"(d) }nen

n . . not necessarily
L) tn .
then {f"(L)}nen is achain - chain

It must have a limit

Kleene’s fix point theorem states that
If f Is continuous, then the limit of the above chain
is the least fixpoint of f

77



Kleene's theorem

(D,E) CPO, f:D — D continuous

et fiz(f) = | | fM(L)

neN

1. fix(f) is afix point of f
f(fix(f)) = fix(f)

2. fix(f) is the least fixpoint of f

vde D. f(d)=d= fix(f) C d

if d is a fixpoint then fiz(f) is smaller than d

/8



Example

(NU o0}, <)

monotone? ok
continuous? ok

70(0) = 0
F1(0) = f(0)=2-0=0

fixpoint reached!

79

1 =0

CPO |



Example

n=n-+1 (NU {00}, <) 1 =0

f(n)=n+1  monotone? ok

f(oo) = ¢ continuous? ok
f7(0) =0
fH0)=f(0)=0+1=1
f20) = f(f1(0) = f(1) =1+1=2
F3(0) = F(F20) = f(2) =2+1 =3
|| /7(0)=| | n=00 fixpoint

80

CPO |



Example

X =X n{1} (p(N), €) L=0 CPO,

monotone? ok

f(X) = X0l continuous? ok

f(0) =0
fF0)=f0)=0n{1} =0

fixpoint reached!

81



Example

X =N\X (p(N), C) 1L=0 CPO,

monotone? NO

f(X)=N\X
the larger X the smaller f(X)

82



Example

X =X U{1} (p(N), )
monotone? ok
J(X)=XU{l} continuous? ok
o) =90

FL0) = £(0) =0 U {1} = {1)
F2(0) = £(71(0)) =

fixpoint reached!

83

L

I

CPO |

f({1}) = {1} u {1} = {1}



Back to commands semantics

84



Loops as fix points

[-1':Com — () — go(2)

[while bdo c]|]P £ [[not b]|P U [[while bdo c]I([c]I([PTIP))

how do we know one solution exists? how do we know it is unique?

[while bdo c]] £ AP . [[not b]|P U [[while b do c[|([[c([P]IP))

[while bdoc] £ (A@ . AP . [[not b]IP U o([c]I([A]IP))) [[while b do c]]

£l . AP . [not b]IP U ([cI([L1P))
[while b do c]] £ T([[while bdo c])) = fix

85



Loops as fix points
[whilebdoc] £ fix 2 Ap.AP.[[not b]IP U @(([c] - [])P)
domainis (%) — () (a CPO with bottom!)

bottom element: | = AP . [ is continuous (proof omitted)

fixpoint: |_|F”( 1)

0o=T"L)= L=iP.0

o, ="' (L)=T(¢y) = AP .[not b]|P

@, =T*( L) =T(p,) =AP.[not b]IP U [[not bII(([c]l * [L])P)

@3 =17( L) =T(p,) = AP .[[not b]IP U [[not b](([c]l ° [AI)P) U [not b1(([c]l » [b])*P)

@, =" (L)=T(gp,) =AP.[not b]P U --- U [not b](([c] » [F])"P)

86



Loops as fix points

[whilebdoc] £ fix I 2 Ap.AP.[[not b]IP U @(([c] - [])P)

fixpoint: |_|F”( L)  where: "' ( L)=AP.[[notb]P
U [[not blI(([Lcll = [L1)P)

U [[not bII((ILcll = [1o1D™P)

(L)) P =[not h]P
U [[not bf[((llcll - [6IDP)

U [[not b]I((llcll = [61)"P)



Loops as fix points

[whilebdoc] £ fix I 2 Ap.AP.[[not b]IP U @(([c] - [])P)

[while b do c]|P = (|_|r"( 1 ))P ~ (|_| (L)) P)

n

_ U [not b](([c]]  [])"P)

= [[not b] U(([[c]] o [b1)"P)

k+1

we can stop when U(([[c]] 10]])'P) C U(([[c]] 10]])"P)



Example

[whilex > Odox:=x—-1]] (x> 1)
— [[x < O] U([[x =x— 1o [[x> 0" (x> 1)

U([[x =X —1fJe[[x>0])"&x>1D=x>1)
U([[x =x— 1] [x> 0] (x> 1) = (x > 0)
U([[x =x— 1] [x> 0] (x> 1)=(x > 0)
U([[x =x— 1] [x> 0] (x> 1) =(x > 0)

Iwhilex > 0dox :=x—1]l (x> 1D =[x <0]J(x>0)=(x=0)

89



Questions




Question 1

letc 2 (z:=x)+(z:=Y)
andlet P £ (x =y = 0)
What is || c||P ?



Question 2

Let c £ if x <y then x :=y else (while true do skip)
andlet O = (x =y = 0)
What is wip(c, O) ?

(x=>yVvVy=0)



